MIMICA code performance analysis report
Wei Zhang

NSC, SNIC

1 Project Description

This report aims to evaluate MIMICA code performance, pinpoint performance bottleneck, and propose
performance-enhancement suggestions.

2 Time Measurements

Experiment platform: Triolith cluster at NSC, Intel Fortran compiler 15.0.1, Intel MPT library impi/5.0.2.044,
optimization flag: -O2, two problem sizes:

e P1: dt =2.0, nstart = 1, nstop = 1000, dx = dy = 62.5, dz = 25.0
e P2: dt = 2.0, nstart = 1, nstop = 1000, dx = dy = 31.25, dz = 50.0
The time measurements (provided by mpprun) are listed in Table

Table 1: P1, P2 time measurements (seconds)

Cores Time (P1) | Times_core/Time | Time (P2) | Timeg_core/Time
8 (1 node) 1412 1.00 1653 1.00
16 (1 node) 1239 1.13 4233 1.09
32 (2 nodes) 916 1.54 2818 1.65
64 (4 nodes) 677 2.08 2057 2.26
128 (8 nodes) 611 2.31 1758 2.64

3 Performance Analysis

Table [1] shows MIMICA has poor scalability. Profilers Allinea and Scalasca are used to analyse the
problem.

3.1 Allinea

The Allinea profiling results of 128 cores are shown in Figures [I] and [2] All results from 8 cores to 128
cores are plotted in Figure

oy

allinea

PERFORMANCE

REPORTS

mpiexec.hydra --bootstrap slurm -np 128 Compute

./mimicav3.exe
8 nodes (16 physical, 16 logical cores per node)
31 GiB per node

128 processes
n573

Thu Feb 16 09:59:39 2017

609 seconds WPl Ire
/proj/nsc/users/weizhang/MIMICA/test_code/
8nodepl

Summary: mimicav3.exe is MPI-bound in this configuration

Compute 21.7% [l

Time spent running application code. High values are usually good.
This is very low; focus on improving MPI or /O performance first.

Time spent in MPI calls. High values are usually bad.
MPI 78.0% _ This is very high; check the MPI breakdown for advice on reducing it.

1/0 0.3% ‘

Time spent in filesystem 1/0. High values are usually bad.
This is very low; however single-process I/O may cause MPI| wait times.

This application run was MPI-bound. A breakdown of this time and advice for investigating further is in the MPI section

below.

Figure 1: P1 time breakdown provided by Allinea (128 cores)

oy

allinea

PERFORMANCE
REPORTS

mpiexec.hydra --bootstrap slurm -np 128 Compute

./mimicav3.exe
8 nodes (16 physical, 16 logical cores per node)

31 GiB per node

128 processes

n555

Fri Feb 24 12:25:20 2017

1782 seconds MPl Vo
/proj/nsc/users/weizhang/MIMICA/test_code/

8nodep2

Summary: mimicav3.exe is MPl-bound in this configuration

Compute 287% [

Time spent running application code. High values are usually good.
This is very low; focus on improving MPI or /O performance first.

Time spent in MPI calls. High values are usually bad.
MPI 71.2% _ This is very high; check the MPI breakdown for advice on reducing it.

1/0 0.1% ‘

Time spent in filesystem 1/0. High values are usually bad.
This is very low; however single-process I/O may cause MP| wait times.

This application run was MPI-bound. A breakdown of this time and advice for investigating further is in the MPI section

below.

Figure 2: P2 time breakdown provided by Allinea (128 cores)

80
L}
N\
70 - L]]
\
R\ \
\ \\
60 - L] =0~ P1:Compute ||
—=—P1:MPI
= o= P2:Compute
50+ —a— P2:MPI
40 g
30t T~a
20 I I I I I il |
0 20 40 60 80 100 120 140

Cores

Figure 3: P1, P2 time percentage of compute and MPI communication.

The portion of MPI communication increases dramatically, which leads to poor scalability.

3.2 Scalasca

Figures [] and [5] show Scalasca profiling results.

Cube-4.3.4: scorep_mimicav3_0O_sum/profile.cubex

File Display Plugins Help

Restore Setting ¥ Save Settings

Absolute -] [Absc\ute >]
-. Metric tree ‘ . Call tree Flat view
7.88e10 Visits (occ) [- 3.88e4 MPI_Recv [+]
[1.31e5 Time (sec)| [0 3.59e4 MPI_Send
[0.00 Minimum Inclusive Time (sec) #-[d 1.28e4 smooth3d_hydro_
1020.92 Maximum Inclusive Time (sec) 2l 58e4 stepping_

O 0 bytes_put (bytes)

O 0 bytes_get (bytes)

6.10ell bytes_sent (bytes)
6.10ell bytes_received (bytes)

3684.67 MPI_Waitall

3255.69 typedef_hydrometeorreal_times_hydre_
2901.55 limiter_Iw_

2472.04 typedef_hydrometeorhydro_add_
2249.53 solverqcfel_

6704.86 solverqccfe_

1616.56 MPI_Allreduce

1438.97 solver.coefft_

1612.75 shared_thermo.cal_gsw_
3412.05 micro2_

2128.53 cal_thermo_

2084.54 advsx_lw_

1033.90 shared_hydro.cal_lambda_
1918.29 calc_precip_

978.15 solver.coefftd_

1929.15 advsy_lw_

1818.60 advsz_lw_

848.05 typedef_hydrometeerhydro_sub_
820.59 shared_thermo.cal_esw_

635.99 shared_thermo.cal_pt_

#-[l 957 88 shared_thermo.cal_gsi_

a3 1273.02 microl_

Figure 4: P1 time breakdown provided by Scalasca (128 cores)

Cube-4.3.4: scorep_mimicav3_O_sum/profile.cubex

File Display Plugins Help

Restore Setting ¥ Save 5ettings

Absolute - l [Absﬂlute >]
[wetric tree | [Elcaitee | Elriat view
4.38e11 Visits (occ) (]| [O 248e5 MPI_Recv =
[~ 5.70e5 Time (sec) 4.08e4 MPI_Send

[@ 8.25e4 smooth3d_hydro_

5.24e5 stepping_

2.09e4 typedef hydrometeorreal_times_hydro_
1.86e4 MPI_Waitall

1.85e4 limiter_lw_

1.5%9e4 typedef_hydrometeorhydro_add_

O 0.00 Minimum Inclusive Time (sec)
| 4450.26 Maximum Inclusive Time (sec)
~0O 0 bytes_put (bytes)
0O 0 bytes_get (bytes)
- 3.61e12 bytes_sent (bytes)
. 3.61e12 bytes_received (bytes)

)

I ENENENENEEEEEEED

1.37e4 cal thermo_

1.33e4 advsx_lw_

9407.98 shared_thermo.cal_gsw_
1.23e4 advsy_Iw_

1.16e4 advsz_Iw_

5451.60 typedef_hydrometeorhydro_sub_
168ed micro2_

4790.23 shared_thermo.cal_esw_
7526.11 calc_precip_

4074.88 shared_thermo.cal_pt_
3882.83 MPI_Allreduce

3577.23 shared_hydro.cal_lambda_
5305.08 shared_thermo.cal_gsi_
3319.69 shared_thermo.cal_ptv_
3125.79 MPI_Bcast

Figure 5: P2 time breakdown provided by Scalasca (128 cores)

They show MPI point-to-point communication is the main time-consuming part, which can be found in e.g.,
subroutine collect_ild_sp:

if (mypid .ne. O) then

call MPI_SEND (tmp(1,1,1), tot, REALTYPE, O, mypid, MPI_COMM_WORLD, ierr)
else

do i = 0, nprocx-1
do j = 0, nprocy-1
if (i+j /= 0) &
call MPI_IRECV (rtmp(1,1,1,i*nprocy+j),tot, REALTYPE, &
i*nprocy+j, i*nprocy+j, MPI_COMM_WORLD, req(i*nprocy+j), ierr)

Similar inefficient point-to-point communication is found in subroutine, e.g. distribute_ild_sp.

4 Conclusion and Suggestion

The main problem of MIMICA is scalability, caused by inefficient MPI communication. One suggestion
for performance-enhancement:

e Replacing MPI point-to-point communication by MPI_GATHER. This is a simple and quick modifica-
tion. However, the performance needs further investigation.

	Project Description
	Time Measurements
	Performance Analysis
	Allinea
	Scalasca

	Conclusion and Suggestion
	Appendix

