
09/19/12 14:00 1

Application expert meeting

C3SE, Göteborg

September 19-20, 2012

Chandan Basu

TAU Performance System

09/19/12 14:00 2

● TAU Performance System® is a portable profiling and tracing toolkit for
performance analysis of parallel programs written in Fortran, C, C++, Java, and
Python.
➢ Profiling shows how much time was spent in a routine / loop / phase
➢ Tracing shows when the events take place in each process along a timeline

● TAU runs on various HPC platforms and it is free (BSD style license)
➢ Linux Cluster / Cray / Blue-Gene
➢ Wide variety of applications
➢ Very wide jobs

● TAU has instrumentation, measurement and analysis tools

● Tau project is more than 15 years and is quite active

● http://tau.uoregon.edu

TAU Performance System

09/19/12 14:00 3

Understanding Application Performance using TAU

● How much time is spent in subroutines / loops?

● How many instructions are executed in these code regions? Floating point rate?

● What is the memory usage of the code? When and where is memory allocated/de-
allocated? Are there any memory leaks?

● How much time does the application spend performing I/O? What is the peak read and
write bandwidth of individual calls, total volume?

● What is the contribution of different phases of the program? What is the time
wasted/spent waiting for collectives, and I/O operations in Initialization, Computation,
I/O phases?

● How much time is spent in different MPI routines? What is the communication pattern?

● Which rank is slow and why?

09/19/12 14:00 4

● Instrumentation: Probes to perform measurements

– Automatic source code instrumentation

– Pre-loading external libraries (MPI, I/O, CUDA, OpenCL)

– Rewriting the binary executable

● Measurement:

– Direct instrumentation / sampling

– Throttling

– Per-thread storage of performance data

– Interface with external packages (PAPI, Scalasca, Score-P, VampirTrace)

● Analysis:

– Visualization of profiles and traces with paraprof, jumpshot etc

– Trace conversion tools

How Does TAU Work?

09/19/12 14:00 5

Method Requires
recompil-
ing

Shows
MPI
events

Routine
level
events

Low level
events
(loops,
phases
etc)

Throttling to
reduce
overhead

Ability
for
selective
instrume
ntation

Runtime Yes Yes

Compiler yes yes yes yes yes

PDT yes yes yes yes yes yes

● External libraries added at link time are not instrumented

● It is possible to wrap pre-built libraries by tau
➢ tau_gen_wrapper hdf5.h /usr/lib/libhdf5.a
➢ Link the tau wrapped libraries instead of original libraries

TAU Instrumentation

09/19/12 14:00 6

● Runtime instrumentation is achieved through library pre-loading.

– MPI, io, memory, cuda, opencl

– MPI instrumentation is included by default the others are enabled by command-
line options

– Substitutes I/O, MPI and memory allocation/ deallocation routines with
instrumented calls

● Works on dynamic executables

● The command is tau_exec

– place this command before the application executable when running the
application.

● Usage example

– tau_exec ./a.out; mpirun -np 4 tau_exec -io ./a.out

– export TAU_TRACK_MEMORY_LEAKS=1; mpirun -np 4 tau_exec -memory
./a.out

Runtime instrumentation
Library Preloading

09/19/12 14:00 7

● Dynamic Instrumentation using DyninstAPI
➢ U. Wisconsin, Madison, and U. Maryland

● Binary re-writing
➢ Support for both static and dynamic executables

● Specify the list of routines to instrument/exclude from
instrumentation

● Specify the TAU measurement library to be injected

● To instrument:
tau_run a.out -o a.inst
mpirun -np 4 ./a.inst
paraprof

Runtime instrumentation
Binary Rewriting

09/19/12 14:00 8

TAU provides compiler wrappers

– tau_f90.sh, tau_cc.sh, and tau_cxx.sh

– Know the native compiler

– Know the MPI library

mpif90 foo.f90 → tau_f90.sh foo.f90

– The compiler wrapper does the automatic instrumentation

➢ Compiler based instrumentation
➢ PDT based instrumentation

Automatic Source code Instrumentation

09/19/12 14:00 9

● TAU Compiler wrapper can use compilers native instrumentation:

export TAU_OPTIONS=”-optCompInst”

tau_f90.sh foo.f90

● Easy & safe

● Our tests showed that there is large performance penalty

Automatic Source code Instrumentation
Compiler based

09/19/12 14:00 10

● PDT: Program Database Toolkit

– Documentation of program components

– Creation of graphic program browsers that show class hierarchies, function call
graphs, and template instantiations

– Insertion of instrumentation calls

● TAU compiler wrapper calls PDT to instrument source code

● A typical compilation of foo.f90 with tau_f90.sh looks like:

– Preprocessing : foo.f90 → foo.pp.f90

– Parsing with PDT Parser: (foo.pp.f90) → foo.pp.pdb

– Instrumenting with TAU: (foo.pp.f90, foo.pp.pdb) → foo.pp.inst.f90

– Compiling with Instrumented Code: (ifort, foo.pp.inst.f90) → foo.o

● Intermediate files are removed by default

– Can be preserved for viewing

Automatic Source code Instrumentation
PDT based

09/19/12 14:00 11

● The Source code instrumentation works !

– Tried different large applications, e.g., NWChem, EC-EARTH, VASP etc.

– For profiling very little performance impact

➢ TAU keeps data in memory and writes at the end of the program
➢ This works well for profiling but not for tracing

● Failures occur when instrumentation calls are placed in wrong place. The failure rates
are small

– In VASP only in one subroutine

– In EC-EARTH in 2 files

– NWChem none

● Failures are not catastrophic, there are fall-back options

– Exclude the files / routines

– Use compiler based instrumentation for those files

● User support is active in debugging

Automatic Source code Instrumentation
PDT based

09/19/12 14:00 12

● Declare the appropriate environment variables for compilation:

export TAU_MAKEFILE=/nobackup/global/cbasu/tau/x86_64/lib/Makefile.tau-
callpath-icpc-mpi-pdt-profile-trace

export TAU_OPTIONS=”-optTrackIO -optTauSelectFile=select.tau” etc.

● Declare the compiler for makefile, e.g.:

export MPIF90=tau_f90.sh; make

● Execute, set different runtime options, e.g.:

export TAU_TRACE=0 ; export TAU_PROFILE=1

export TAU_COMM_MATRIX=1; export TAU_SAMPLING=0

mpirun -np 4 ./a.out

● Analyze profile data using paraprof

paraprof --pack app.ppk ## packing of data

paraprof app.ppk ## visualization

Using TAU

09/19/12 14:00 13

Visualization with Paraprof

09/19/12 14:00 14

export TAU_OPTIONS=’-optTauSelectFile=select.tau'

cat select.tau

BEGIN_INSTRUMENT_SECTION

loops routine=‘‘#’’

END_INSTRUMENT_SECTION

TAU Loop level profile

09/19/12 14:00 15

● export TAU_METRICS=TIME:PAPI_FP_OPS:PAPI_TOT_INS

● run

TAU with PAPI

09/19/12 14:00 16

● export TAU_CALLPATH=1

● export TAU_CALLPATH_DEPTH=10

● run

Callpath Profile

09/19/12 14:00 17

Call Graph

09/19/12 14:00 18

● export TAU_COMM_MATRIX=1

● run

Communication Matrix Display

09/19/12 14:00 19

● export TAU_OPTIONS=”-optDetectMemoryLeaks -optTrackIO”

● Compile, run

Detect I/O, Memory Usage

09/19/12 14:00 20

● What happens in a code at a given time?

– export TAU_TRACE=1

– export TRACEDIR=/nobackup/global/cbasu/trace

– Run

– tau_treemerge.pl

● For Jumpshot:

– tau2slog2 tau.trc tau.edf -o app.slog2; jumpshot app.slog2

● For Vampir (OTF):

– tau2otf tau.trc tau.edf app.otf; vampir app.otf

● For ParaVer:

– tau_convert -paraver tau.trc tau.edf app.prv; paraver app.prv

Generating Event Traces

09/19/12 14:00 21

● The timeline canvas is a timeline vs time plot

● Each point on the canvas is identified by two numbers: a timestamp and a timeline ID

● State, arrow, and event : types of objects

● Objects are in preview state when zoomed out

– Each thick line represents a collection of arrows between its two ending timelines

– The rectangle that has horizontal strips of colors is the preview state

– The different colors inside a preview state represent the various categories of
real states that are amalgamated within the time range of the preview state

TAU trace With Jumpshot

09/19/12 14:00 22

.

TAU trace Jumpshot

09/19/12 14:00 23

TAU trace Jumpshot

09/19/12 14:00 24

TAU trace Jumpshot

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

